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RING INDEXED LIE ALGEBRAS

A tribute to L Onsager’s Algebra underlying his celebrated 2d Ising
model solution (1944).

Onsager’s integer-indexed infinite-dimensional Lie Algebra of spin
chain operators,

[Am, An] = 4Gm−n, [Gm, An] = 2(Am+n − An−m), [Gm, Gn] = 0.

; G−m = −Gm.

A potential central element, G0, is not generated on the r.h.s. of the
algebra.

1C Zachos Miami 2005 Dec 14, 2005



Onsager also recognized that his algebra is effectively a subalgebra of
the SL(2) loop algebra (SU(2) centerless Kac-Moody): The loop Lie
algebra consists of three integer-indexed towers of elements, with

[K+
m, K−

n ] = K0
m+n , [K0

m, K±
n ] = ±K±

m+n , [K±
m, K±

n ] = [K0
m, K0

n] = 0.

Given the linear involutive automorphism of this algebra,

K±
m 7→ K∓

−m , K0
m 7→ −K0

−m ,

the Onsager algebra is identifiable with the fixed-point subalgebra
(Uglov & Ivanov): the subalgebra invariant under this automorphism,
consisting of two towers,

Am = 2
√

2 (K+
m + K−

−m), Gm = 2 (K0
m −K0

−m).

Inclusion of the Kac-Moody center leads to no modifications.

Generalizes to SL(N) (Uglov & Ivanov, 1996) nicely.

But, can we generalize beyond subalgebras of Kac-Moody?
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Yes, new algebras, provided we consider interesting rings of indices:

[Ja
m, J b

n] = Ja+b
m+ωan − Ja+b

n+ωbm
,

where the indices a, b, ..., m, n, ... and the parameter ω may be arbi-
trary, in general.

However, the choice of ω as an N -th root of unity, ωN = 1, hence
1 + ω + ω2 + ... + ωN−1 = 0, and a, b, ... integers, m,n, ... proportional
to integers, yields by far the most interesting family.

; the upper indices are only distinct modN ; and the lower
indices take values in the cyclotomic integer ring Z[ω], namely,
r + sω + kω2 + ... + jωN−2.

NB Grading of the upper indices, but lack of conventional grading
for the lower indices.

NB Satisfies the Jacobi identity.

• Possesses the central element

J0
0 = J−a

−ω−amJa
m.

For the cyclotomic family, “Casimir invariants” may be written as

J0
0 = (Ja

m)N ,

provided m = 0 if a = 0.
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In fact, this Lie algebra might be constructed from the group algebra
of associative operators

Ja
mJ b

n = Ja+b
m+ωan (= J b

ωanJ
a
ω−bm

),

which satisfy (Ja
mJ b

n)J c
k = Ja

m(J b
nJ

c
k).

; Customary in such cases to also consider the anticommutator of
these operators, to produce a partner graded Lie algebra,

{Ja
m, J b

n} = Ja+b
m+ωan + Ja+b

n+ωbm
.

• A simple operator realization of this algebra:

Ja
m = em exp(x) ωa∂x,

(Recall translation action of ω∂xf (x) = f (x + ln ω) ω∂x.)

; Easy to see that the scale of the a, b is fixed, but that of the m,n is
labile, as they can be rescaled with no change to the structure of the
algebra.

• A variant rewriting of this realization results from the simplifying
Campbell-Baker-Hausdorff expansion for the particular operators in-
volved,

Ja
m = ωa(∂x+ m

ωa−1 exp(x)).

; Equivalently, given oscillator operators, [α, α†] = 1, the above real-
izations may be written in a form evocative of vertex operators,

Ja
m = em α† ωa α†α = ωa(α†α+ m

ωa−1α†).
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In the cyclotomic case, ωN = 1, a, b are equivalent modN :
a, b, .. = 0, 1, 2, ..., N − 1.

The N = 2 case, ω = −1, a = 0, 1, is old news, as the corresponding
lower index ring is that of the conventional integers; and the resulting
algebra degenerates to essentially the Onsager algebra, a subalgebra
of the SL(2) loop algebra,

Am = 2J1
m , Gm = J0

m − J0
−m .

; A graded extension of the Onsager algebra of this type is trivial,
since

Hm−n ≡ {Am, An} = 4(J0
m−n+J0

n−m),

check to be central—commute with all elements, An, Gn.
; J0

m ∼ −J0
−m+‘constant’; hence, conversely, requiring a trivial

graded extension of the Onsager algebra essentially amounts to the
product algebra. (NB AmAm is not an invariant of the Onsager
algebra per se, but only upon this further condition, AmAm = 4J0

0 .)

• Above realization reduces here to

Am = 2em exp(x)(−)∂x, Gm = em exp(x) − e−m exp(x).

In this realization, the potential candidate for a graded extension,

Hm = 4(em exp(x) + e−m exp(x)),

manifestly commutes with all elements, An, Gn .

• An alternate realization in terms of Pauli matrices is

Am = 2emσ3σ1 , Gm = (em − e−m)σ3 ,

similarly illustrating the triviality of Hm ∝ 11.
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Something new: N = 3

THE EISENSTEIN INTEGER LATTICE

ω = e2πi/3 = −1 − ω2, so the lower indices are of the form m ≡ k + jω

(with integer k, j), closing under addition, subtraction, and multipli-
cation.

; Comprise the Euclidean ring Z[ω] of Eisenstein-Jacobi integers.
These define a triangular 2-d lattice with hexagonal rotational sym-
metry: there are three lines at 60◦ to each other going through each
such integer and connecting it to its six nearest neighbors, forming
honeycomb hexagons:

u u u u

u u u u u

u u u u

u u u u u

Lattice of utility in cohesive energy calculations for monolayer
graphite, 3-state-Potts models associated with WZW CFT models,
and, perhaps more provocatively, complexifies to define the complex
Leech lattice, of significance in string theory, and Z3 orbifolds in CFT.
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Each point on the lattice may be connected to the origin by shifts along
the ω root and along the x-axis. A 600 rotation ωm, on m ≡ k + jω, for
integer coordinates k, j, may be represented by

Ω

(
k

j

)
≡

(
0 −1

1 −1

) (
k

j

)
,

for Ω3 = 11 , and Ω2 = −11 −Ω.
Thus, the lower indices of the algebra may be considered as a
doublet of integers composing through this rule.

; Illustrate explicitly to stress the differences from conventional loop
algebras and sl(3) generalizations of the Onsager algebra.

Faithful representation in terms of 3×3 matrices. Sylvester’s “nonion”
basis for GL(3) groups (1882), is built out of his standard clock and
shift unitary unimodular matrices,

Q ≡

 1 0 0

0 ω 0

0 0 ω2

 , P ≡

 0 1 0

0 0 1

1 0 0

 ,

so that Q3 = P 3 = 11 .

These obey the braiding identity PQ = ω QP .

For integer indices adding mod 3, the complete set of nine unitary
unimodular 3× 3 matrices

M(m1,m2) ≡ ωm1m2/2 Qm1Pm2,

where M †
(m1,m2)

= M(−m1,−m2), and TrM(m1,m2) = 0, except for m1 =

m2 = 0 mod3, suffice to span the group algebra of GL(3).

7C Zachos Miami 2005 Dec 14, 2005



Further, since
MmMn = ωn×m/2Mm+n ,

where m× n ≡ m1n2 − m2n1, they also satisfy the Lie algebra of
su(3) (FFZ),

[Mm, Mn] = −2i sin
(π

3
m× n

)
Mm+n .

It is then simple to realize the algebra in the unimodular 3 × 3 matrix
representation,

Ja
m = emQ P a, ,

ie, the three “towers”,

J1
m =

 0 em 0

0 0 emω

emω2
0 0

 , J2
m =

 0 0 em

emω 0 0

0 emω2
0

 , J0
m =

 em 0 0

0 emω 0

0 0 emω2

 .
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Contrast this Lie algebra to not only su(3) loop algebra, but also to
its subalgebras, such as the the sl(3) generalization of the Onsager al-
gebra (Uglov & Ivanov) consisting of five towers. The relevant in-
volutive automorphism of su(3) loop algebra, in standard Chevalley
notation, is

H1,2
m 7→ −H1,2

−m , E±1
m 7→ E∓1

−m , E±2
m 7→ E∓2

−m , E±3
m 7→ −E∓3

−m .

The subalgebra left invariant under this automorphism consists of the
five towers,

H1,2
m −H1,2

−m , E1
m + E−1

−m , E2
m + E−2

−m , E3
m − E−3

−m ,

or, explicitly,

h1
m =

1√
6

 em − e−m 0 0

0 e−m − em 0

0 0 0

 ,

h2
m =

1

3
√

2

 em − e−m 0 0

0 em − e−m 0

0 0 2e−m − 2em

 ,

e1
m =

1√
3

 0 em 0

e−m 0 0

0 0 0

 , e2
m =

1√
3

 0 0 em

0 0 0

e−m 0 0

 ,

e3
m =

1√
3

 0 0 0

0 0 em

0 −e−m 0

 .
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• For higher N ≥ 5, the cyclotomic integer rings Z [ω] are less
compelling, and are linked to quasicrystals. Specifically, the 2-dim
complex plane R2 fills up densely with the quasilattice set of indices,
which fail to close to a “sparse” periodic structure analogous to the
Eisenstein lattice.

E.g., for N = 5, motions are symmetric on a 4-dimensional periodic
lattice, Ω5 = 11 , and Ω4 = −11 −Ω−Ω2 −Ω3, with

Ω ≡


0 0 0 −1

1 0 0 −1

0 1 0 −1

0 0 1 −1

 ,

so lower indices may be effectively regarded as a quartet of integers—
and, likewise, an N − 1-tuplet of integers for higher N . However,
projected on the actual complex plane, nearby numbers are not neces-
sarily represented by contiguous points on the 4-d lattice.

• A quasicrystal is a higher-dimensional deterministic discrete
periodic structure whose projection to an embedded “external space”
(in our case, the complex plane) yields nonperiodic structures of
enhanced regularity.

Links between these algebras over cyclotomic fields and those on qua-
sicrystals which exhibit a five-fold symmetry. For ω5 = 1 and the
golden ratio, τ ≡ 1

2(1 +
√

5) ∼ 1.618, which satisfies τ 2 = 1 + τ ,
note that τ = −ω2 − ω3, since then 1 + ω + ω2 + ω3 + ω4 = 0 follows.
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The field Z[τ ] = Z+Zτ suitably restriced to the Fibonacci chain,
nτ +

⌊
n
τ + 1

⌋
, an aperiodic point set of 1-d cut-and-project quasicrys-

tals, which is not a ring.

Nevertheless, FTZ have found an associative graded composition in
a self-selecting subset of it. So this one can still serve as the domain
of lower indices in a extension of these algebras to a structure which,
improbably, still respects associativity!

• Fruitful source of insight.
Vertex operator realization of the Lie algebras introduced and its evo-
cation of coherent states,
; likely useful applications in CFT and brane physics.
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